40 research outputs found

    Astrocyte-Specific Expression Patterns Associated with the PDGF-Induced Glioma Microenvironment

    Get PDF
    The tumor microenvironment contains normal, non-neoplastic cells that may contribute to tumor growth and maintenance. Within PDGF-driven murine gliomas, tumor-associated astrocytes (TAAs) are a large component of the tumor microenvironment. The function of non-neoplastic astrocytes in the glioma microenvironment has not been fully elucidated; moreover, the differences between these astrocytes and normal astrocytes are unknown. We therefore sought to identify genes and pathways that are increased in TAAs relative to normal astrocytes and also to determine whether expression of these genes correlates with glioma behavior.We compared the gene expression profiles of TAAs to normal astrocytes and found the Antigen Presentation Pathway to be significantly increased in TAAs. We then identified a gene signature for glioblastoma (GBM) TAAs and validated the expression of some of those genes within the tumor. We also show that TAAs are derived from the non-tumor, stromal environment, in contrast to the Olig2+ tumor cells that constitute the neoplastic elements in our model. Finally, we validate this GBM TAA signature in patients and show that a TAA-derived gene signature predicts survival specifically in the human proneural subtype of glioma.Our data identifies unique gene expression patterns between populations of TAAs and suggests potential roles for stromal astrocytes within the glioma microenvironment. We show that certain stromal astrocytes in the tumor microenvironment express a GBM-specific gene signature and that the majority of these stromal astrocyte genes can predict survival in the human disease

    Loss of ATM/Chk2/p53 Pathway Components Accelerates Tumor Development and Contributes to Radiation Resistance in Gliomas

    Get PDF
    SummaryMaintenance of genomic integrity is essential for adult tissue homeostasis and defects in the DNA-damage response (DDR) machinery are linked to numerous pathologies including cancer. Here, we present evidence that the DDR exerts tumor suppressor activity in gliomas. We show that genes encoding components of the DDR pathway are frequently altered in human gliomas and that loss of elements of the ATM/Chk2/p53 cascade accelerates tumor formation in a glioma mouse model. We demonstrate that Chk2 is required for glioma response to ionizing radiation in vivo and is necessary for DNA-damage checkpoints in the neuronal stem cell compartment. Finally, we observed that the DDR is constitutively activated in a subset of human GBMs, and such activation correlates with regions of hypoxia

    Perivascular Nitric Oxide Activates Notch Signaling and Promotes Stem-like Character in PDGF-Induced Glioma Cells

    Get PDF
    SummaryeNOS expression is elevated in human glioblastomas and correlated with increased tumor growth and aggressive character. We investigated the potential role of nitric oxide (NO) activity in the perivascular niche (PVN) using a genetic engineered mouse model of PDGF-induced gliomas. eNOS expression is highly elevated in tumor vascular endothelium adjacent to perivascular glioma cells expressing Nestin, Notch, and the NO receptor, sGC. In addition, the NO/cGMP/PKG pathway drives Notch signaling in PDGF-induced gliomas in vitro, and induces the side population phenotype in primary glioma cell cultures. NO also increases neurosphere forming capacity of PDGF-driven glioma primary cultures, and enhances their tumorigenic capacity in vivo. Loss of NO activity in these tumors suppresses Notch signaling in vivo and prolongs survival of mice. This mechanism is conserved in human PDGFR amplified gliomas. The NO/cGMP/PKG pathway's promotion of stem cell-like character in the tumor PVN may identify therapeutic targets for this subset of gliomas

    Somatic genome editing with the RCAS-TVA-CRISPR-Cas9 system for precision tumor modeling

    Get PDF
    To accurately recapitulate the heterogeneity of human diseases, animal models require to recreate multiple complex genetic alterations. Here, we combine the RCAS-TVA system with the CRISPR-Cas9 genome editing tools for precise modeling of human tumors. We show that somatic deletion in neural stem cells of a variety of known tumor suppressor genes (Trp53, Cdkn2a, and Pten) leads to high-grade glioma formation. Moreover, by simultaneous delivery of pairs of guide RNAs we generate different gene fusions with oncogenic potential, either by chromosomal deletion (Bcan-Ntrk1) or by chromosomal translocation (Myb-Qk). Lastly, using homology-directed-repair, we also produce tumors carrying the homologous mutation to human BRAF V600E, frequently identified in a variety of tumors, including different types of gliomas. In summary, we have developed an extremely versatile mouse model for in vivo somatic genome editing, that will elicit the generation of more accurate cancer models particularly appropriate for pre-clinical testing.A.C.-G is recipient of a Severo-Ochoa PhD fellowship. C.M. and V.M. are recipients of a "La Caixa "PhD fellowship. We thank A.J. Schuhmacher for the initial assistance with the intracranial injections in adult mice and C.S. Clemente-Troncone for the technical support. We thank Carmen Blanco, David Olmeda, and Marisol Soengas for sharing reagents and Orlando Dominguez for the help with the design of the BRAF high- throughput sequencing. We sincerely thank Dr. José Luis Rodríguez Peralto (Hospital U. 12 de Octubre Madrid) for the BRAF V600 IHCs staining. This research was supported by funds from the Acción Estratégica en Salud Spanish National Research and Development Plan, Instituto de Salud Carlos III (ISCIII), cofounder by FEDER (ERDF) (PI14/01884) to S.R.-P., by a 017 Leonardo Grant for Researchers and Cultural Creators from the BBVA Foundation and a grant from the Seve Ballesteros Foundation to M.S.S

    MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas.

    Get PDF
    Temozolomide (TMZ) is an oral alkylating agent used for the treatment of glioblastoma and is now becoming a chemotherapeutic option in patients diagnosed with high-risk low-grade gliomas. The O-6-methylguanine-DNA methyltransferase (MGMT) is responsible for the direct repair of the main TMZ-induced toxic DNA adduct, the O6-Methylguanine lesion. MGMT promoter hypermethylation is currently the only known biomarker for TMZ response in glioblastoma patients. Here we show that a subset of recurrent gliomas carries MGMT genomic rearrangements that lead to MGMT overexpression, independently from changes in its promoter methylation. By leveraging the CRISPR/Cas9 technology we generated some of these MGMT rearrangements in glioma cells and demonstrated that the MGMT genomic rearrangements contribute to TMZ resistance both in vitro and in vivo. Lastly, we showed that such fusions can be detected in tumor-derived exosomes and could potentially represent an early detection marker of tumor recurrence in a subset of patients treated with TMZ

    EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer

    Get PDF
    Transport of macromolecules through the nuclear pore by importins and exportins plays a critical role in the spatial regulation of protein activity. How cancer cells co-opt this process to promote tumorigenesis remains unclear. The epidermal growth factor receptor (EGFR) plays a critical role in normal development and in human cancer. Here we describe a mechanism of EGFR regulation through the importin β family member RAN-binding protein 6 (RanBP6), a protein of hitherto unknown functions. We show that RanBP6 silencing impairs nuclear translocation of signal transducer and activator of transcription 3 (STAT3), reduces STAT3 binding to the EGFR promoter, results in transcriptional derepression of EGFR, and increased EGFR pathway output. Focal deletions of the RanBP6 locus on chromosome 9p were found in a subset of glioblastoma (GBM) and silencing of RanBP6 promoted glioma growth in vivo. Our results provide an example of EGFR deregulation in cancer through silencing of components of the nuclear import pathway.This research was supported by the National Brain Tumor Society (I.K.M.), the National Institutes of Health grants 1R01NS080944-01 (I.K.M.), 1 R35 NS105109 01 (I.K.M.), and P30CA008748 (MSKCC Core Grant), the Geoffrey Beene Cancer Research Foundation (I.K.M.), the Cycle of Survival (I.K.M.), and the Seve Ballesteros Foundation (M.S.). B.O. was supported by an American–Italian Cancer Foundation fellowship and a MSKCC Brain Tumor Center grant. W.-Y.H. is the recipient of a FY15 Horizon Award from the U.S. Department of Defense (W81XWH-15-PRCRP-HA). A.C.-G. is the recipient of the Severo-Ochoa PhD fellowship. Further support was provided by the Sontag Foundation (B.S.T.). We thank all members of the Mellinghoff laboratory for helpful suggestions. We thank Dr. Fiona Ginty (Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA) for assistance with multiplexed immunofluorescence. We thank A.J. Schuhmacher and C.S. Clemente-Troncone for assistance with the in vivo experiments, M. Kaufmann for assistance in the luciferase assays and N. Yannuzzi for assistance in cloning.S

    A Functional Contextualist Account of Behavioral Economics: Relational Frame Theory Applied to Decision-Making and Choice Behavior

    No full text
    Behavioral economics is a discipline that is mainly rooted in cognitivism and that is concerned with the study of decision-making processes and choice behavior. These involve addressing the relations between cognition and overt behavior, which comprise one of the most challenging topics in the domain of behavioral sciences at large and have been approached by different epistemological viewpoints. Within the cognitivist tradition, private events have been often treated as causes of behaviors, adopting a mechanistic view. Conversely, a contextual functional behavioral perspective treats them with the same methodology that is adopted for overt behaviors. Relational frame theory, a post-Skinnerian theory of language and cognition, offers a behavioral perspective on cognition and overt behavior and how they influence human behavior, by keeping a high degree of coherence with basic principles and goals of behavior analysis (i.e., effective action). This conceptual paper represents an attempt to offer a perspective drawn from contextual behavioral science on some constructs described in behavioral econom-ics. Furthermore, it provides a common ground for behavior analysts and researchers in other fields of psychology to further expand our knowledge and respective explanations of decision-making processes. Finally, it draws a line for connecting basic research to applied solutions
    corecore